Abstract

The growth of the urban population together with a high concentration of air pollution have important health impacts on citizens who are exposed to them, causing serious risks of the development and evolution of different chronic diseases. This paper presents the design and development of a novel participatory citizen science-based application and data ecosystem model. These developments are imperative and scientifically designed to gather and process perceptual sensing of urban, environmental, and health data. This data acquisition approach allows citizens to gather and generate environment- and health-related data through mobile devices. The sum of all citizens’ data will continuously enrich and increase the volumes of data coming from the city sensors and sources across geographical locations. These scientifically generated data, coupled with data from the city sensors and sources, will enable specialized predictive analytic solutions to empower citizens with urban, environmental, and health recommendations, while enabling new data-driven policies. Although it is difficult for citizens to relate their personal behaviour to large-scale problems such as climate change, pollution, or public health, the developed ecosystem provides the necessary tools to enable a greener and healthier lifestyle, improve quality of life, and contribute towards a more sustainable local environment.

Highlights

  • The last century has experienced a very intense urbanization transition

  • The PulsAir was designed and developed integrating game-design elements, and feedback received from end users regarding requirements and needs for interface designs, functionalities, and workflow

  • Needs and requirements were collected through qualitative research techniques, which took place in the different cities where the project is being piloted

Read more

Summary

Introduction

The last century has experienced a very intense urbanization transition. It is foreseen that in 2050, 68% of the population will live in the cities. The growing of urban populations is manly driven by social and economic opportunities and the extended availability of services such as health, education, or public transportation [1]. Understanding the key trends in urbanization is crucial to understand the challenges in meeting the needs of their growing urban populations. Cities generate 75% of the carbon emission, which means the urban population is highly exposed to pollutants and vulnerable to climate changes [2]. The World Health Organization (WHO) estimates that 63% of global mortality (about 36 million deaths per year) is the result of non-communicable diseases (e.g., cardiovascular disease, cancer, diabetes, and lung disease).

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.