Abstract
This study investigates the application of cavitation in non-invasive abdominal fat reduction and body contouring, a topic of considerable interest in the medical and aesthetic fields. We explore the potential of cavitation to alter abdominal fat composition and delve into the optimization of fat prediction models using advanced hyperparameter optimization techniques, Hyperopt and Optuna. Our objective is to enhance the predictive accuracy of abdominal fat dynamics post-cavitation treatment. Employing a robust dataset with abdominal fat measurements and cavitation treatment parameters, we evaluate the efficacy of our approach through regression analysis. The performance of Hyperopt and Optuna regression models is assessed using metrics such as mean squared error, mean absolute error, and R-squared score. Our results reveal that both models exhibit strong predictive capabilities, with R-squared scores reaching 94.12% and 94.11% for post-treatment visceral fat, and 71.15% and 70.48% for post-treatment subcutaneous fat predictions, respectively. Additionally, we investigate feature selection techniques to pinpoint critical predictors within the fat prediction models. Techniques including F-value selection, mutual information, recursive feature elimination with logistic regression and random forests, variance thresholding, and feature importance evaluation are utilized. The analysis identifies key features such as BMI, waist circumference, and pretreatment fat levels as significant predictors of post-treatment fat outcomes. Our findings underscore the effectiveness of hyperparameter optimization in refining fat prediction models and offer valuable insights for the advancement of non-invasive fat reduction methods. This research holds important implications for both the scientific community and clinical practitioners, paving the way for improved treatment strategies in the realm of body contouring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.