Abstract
Growth of the large-sized and high-quality MoS2 single crystals for high-performance low-power electronic applications is an important step to pursue. Despite the significant improvement made in minimizing extrinsic MoS2 contact resistance based on interfacial engineering of the devices, the electron mobility of field-effect transistors (FETs) made of a synthetic monolayer MoS2 is yet far below the expected theoretical values, implying that the MoS2 crystal quality needs to be further improved. Here, we demonstrate the high-performance two-terminal MoS2 FETs with room-temperature electron mobility up to ∼90 cm2 V-1 s-1 based on the sulfurization growth of the bifunctional precursor, sodium molybdate dihydrate. This unique transition-metal precursor, serving as both the crystalline Mo source and seed promotor (sodium), could facilitate the lateral growth of the highly crystalline monolayer MoS2 crystals (edge length up to ∼260 μm). Substrate surface treatment with oxygen plasma prior to the deposition of the Mo precursor is fundamental to increase the wettability between the Mo source and the substrate, promoting the thinning and coalescence of the source clusters during the growth of large-sized MoS2 single crystals. The control of growth temperature is also an essential step to grow a strictly monolayer MoS2 crystal. A proof-of-concept for thermoelectric device integration utilizing monolayer MoS2 sheds light on its potential in low-voltage and self-powered electronics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have