7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1088/1748-9326/ab4a3a
Copy DOIJournal: Environmental Research Letters | Publication Date: Nov 1, 2019 |
Citations: 12 | License type: cc-by |
Spatially-explicit population projections by age are increasingly needed for understanding bilateral human–environment interactions. Conventional demographic methods for projecting age structure experience substantial challenges at small spatial scales. In search of a potentially better-performing alternative, we develop an empirically based spatial model of population age structure and test its application in projecting US population age structure over the 21st century under various socioeconomic scenarios (SSPs). The model draws on 40 years of historical data explaining changes in spatial age distribution at the county level. It demonstrates that a very good model fit is achievable even with parsimonious data input, and distinguishes itself from existing methods as a promising approach to spatial age structure modeling at the global level where data availability is often limited. Results suggest that wide variations in the spatial pattern of county-level age structure are plausible, with the possibility of substantial aging clustered in particular parts of the country. Aging is experienced most prominently in thinly populated counties in the Midwest and the Rocky Mountains, while cities and surrounding counties, particularly in California, as well as the southern parts of New England and the Mid-Atlantic region, maintain a younger population age structure with a lower proportion in the most vulnerable 70+ age group. The urban concentration of younger people, as well as the absolute number of vulnerable elderly people can vary strongly by SSP.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.