Abstract
Use of serious games to teach concepts of various important topics including Cybersecurity is growing. A figure of merit for the serious games could be learning outcome and user experience(UX). With enhanced learning outcome and user experience, the player is likely to favourably rate a game. The organisation supporting such games would also benefit from such efficient training process.We report an empirical comparison of two cybersecurity games namely ; Use of Firewalls for network protection and concepts of Structured Query Language (SQL) injections to get unauthorised access to online databases. We have designed these games in two versions. The version without using adaptive features provide a baseline to compare efficacy of the machine learning based adaptive game while comparing the learning outcomes and user experience (UX). The efficacy of the Machine Learning (ML) agent in providing the adaptability to the game play is based on classification of player to two categories viz. Beginner and Expert using historical player data on three relevant attributes. The game dynamics is modulated based on the player classification to ensure that game challenge is optimally suited to player type and the player continues to experience playful flow in different stages of the game.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.