Abstract

The crystallographic lattice constants and superconducting critical temperatures of FeSe0.5Te0.5 thin films grown on oxide substrates have been found to have no dependence on the in-plane lattice constants of the substrates. However, a correlation between various structural and transport properties of the films and the presence of oxygen penetration from the substrate into the film has been observed; i.e., oxygen penetration is suppressed in films with relatively high critical temperatures. Thus it is needed to identify appropriate substrates for the growth of iron chalcogenide superconducting thin films by considering the effects of the chemical properties of the substrate on the resulting structural and superconducting properties of the thin film. Upon characterization of the substrate materials used in our growth studies, the results strongly indicate that a “good” substrate has the following features: 1) its crystal structure does not have a vacancy that would permit electronegative elements to migrate, and 2) it is composed only of typical elements, in contrast to popularly used substrates that contain transition-metal elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.