Abstract

ABSTRACTMean residence time of rice flour in a twin‐screw extruder was determined using a blue tracer. Variables studied included moisture content, screw speed, barrel temperature, and screw configuration. Mean residence time increased with the increase of the barrel temperature and with the addition of reverse and kneading elements. Mean residence time was significantly related to screw speed, moisture content, die pressure, and screw configuration (P < 0.05). An empirical model was developed to predict mean residence time with the ability to reflect the changes of the barrel temperature and screw configuration. The effects of different extrusion operating conditions including screw speed, moisture content, barrel temperature, and screw geometry on the mean residence time were considered in the model. The validity of the developed model was extensively evaluated and verified using different screw geometries and other processing variables. The mean residence times predicted by the developed model are in good agreement with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.