Abstract
ABSTRACT Due to cost-effectiveness and high efficiency, two-phase case-control sampling has been widely used in epidemiology studies. We develop a semi-parametric empirical likelihood approach to two-phase case-control data under the logistic regression model. We show that the maximum empirical likelihood estimator has an asymptotically normal distribution, and the empirical likelihood ratio follows an asymptotically central chi-square distribution. We find that the maximum empirical likelihood estimator is equal to Breslow and Holubkov (1997)'s maximum likelihood estimator. Even so, the limiting distribution of the likelihood ratio, likelihood-ratio-based interval, and test are all new. Furthermore, we construct new Kolmogorov–Smirnov type goodness-of-fit tests to test the validation of the underlying logistic regression model. Our simulation results and a real application show that the likelihood-ratio-based interval and test have certain merits over the Wald-type counterparts and that the proposed goodness-of-fit test is valid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.