Abstract
In this paper, we propose bivariate iterated Farlie–Gumbel–Morgenstern (FGM) due to [Huang and Kotz (1984). Correlation structure in iterated Farlie-Gumbel-Morgenstern distributions. Biometrika 71(3), 633–636. https://doi.org/10.2307/2336577] with Rayleigh marginals. The dependence stress–strength reliability function is derived with its important reliability characteristics. Estimates of dependence reliability parameters are obtained. We analyse the effects of dependence parameters on the reliability function. We found that the upper bound of the positive correlation coefficient is attaining to 0.41 under a single iteration with Rayleigh marginals. A comprehensive comparison between classical FGM with iterated FGM copulas is graphically examined to assess the over or under estimation of reliability with respect to α and β. We propose a two-phase estimation procedure for estimating the reliability parameters. A Monte-Carlo simulation study is conducted to assess the finite sample behaviour of the proposed reliability estimators. Finally, the proposed estimators are examined and validated with real data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.