Abstract

Abstract This research addresses the lack of comprehensive studies utilizing classical molecular dynamics simulations for monolayer group-III monochalcogenide materials. These materials, including GaS, GaSe, and InSe, have shown promise for diverse applications but lack well-defined empirical interatomic potentials in the literature. This study is concentrated on the development of empirical interatomic potential parameters for these materials using the particle swarm optimization method, filling a gap in the literature regarding classical molecular dynamics simulations. The parameters are optimized based on fundamental physical characteristics such as the lattice constants, bond lengths, phonon dispersions, and the equation of state, obtained from first-principles calculations. The developed potential parameters are then employed to predict lattice thermal conductivity through non-equilibrium classical molecular dynamics simulations, providing insights into the thermal transport properties of these materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.