Abstract
Lung modelling has emerged as a useful method for diagnosing lung diseases. Image segmentation is an important part of lung modelling systems. The ill-defined nature of image segmentation makes automated lung modelling difficult. Also, low resolution of lung images further increases the difficulty of the lung image segmentation. It is therefore important to identify a suitable segmentation algorithm that can enhance lung modelling accuracies. This paper investigates six image segmentation algorithms, used in medical imaging, and also their application to lung modelling. The algorithms are: normalised cuts, graph, region growing, watershed, Markov random field, and mean shift. The performance of the six segmentation algorithms is determined through a set of experiments on realistic 2D CT lung images. An experimental procedure is devised to measure the performance of the tested algorithms. The measured segmentation accuracies as well as execution times of the six algorithms are then compared and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.