Abstract
According to many governments electric vehicles are seen as an efficient mean to mitigate carbon dioxide emissions in the transport sector. However, the energy charged causes carbon dioxide emissions in the energy sector. This study demonstrates results from measuring time-dependent electricity consumption of electric vehicles during driving and charging. The electric vehicles were used in a French-German commuter scenario between March and August 2013. The electric vehicles ran a total distance of 38,365 km. 639 individual charging events were recorded. Vehicle specific data on electricity consumption are matched to disaggregated electricity generation data with time-dependent national electricity generation mixes and corresponding carbon dioxide emissions with an hourly time resolution. Carbon dioxide emission reduction potentials of different charging strategies are identified. As carbon dioxide emission intensities change over time according to the electric power systems, specific smart charging services are a convincing strategy to reduce electric vehicle specific carbon dioxide emissions. Our results indicate that charging in France causes only about ten percent of the carbon dioxide emissions compared to Germany, where the carbon intensity is more diverse.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.