Abstract
The paper develops empirical Bayes (EB) confidence intervals for population means with distributions belonging to the natural exponential family-quadratic variance function (NEF-QVF) family when the sample size for a particular population is moderate or large. The basis for such development is to find an interval centred around the posterior mean which meets the target coverage probability asymptotically, and then show that the difference between the coverage probabilities of the Bayes and EB intervals is negligible up to a certain order. The approach taken is Edgeworth expansion so that the sample sizes from the different populations need not be significantly large. The proposed intervals meet the target coverage probabilities asymptotically, and are easy to construct. We illustrate use of these intervals in the context of small area estimation both through real and simulated data. The proposed intervals are different from the bootstrap intervals. The latter can be applied quite generally, but the order of accuracy of these intervals in meeting the desired coverage probability is unknown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.