Abstract

We introduce a new adjusted residual maximum likelihood method (REML) in the context of producing an empirical Bayes (EB) confidence interval for a normal mean, a problem of great interest in different small area applications. Like other rival empirical Bayes confidence intervals such as the well-known parametric bootstrap empirical Bayes method, the proposed interval is second-order correct, that is, the proposed interval has a coverage error of order $O(m^{-{3}/{2}})$. Moreover, the proposed interval is carefully constructed so that it always produces an interval shorter than the corresponding direct confidence interval, a property not analytically proved for other competing methods that have the same coverage error of order $O(m^{-{3}/{2}})$. The proposed method is not simulation-based and requires only a fraction of computing time needed for the corresponding parametric bootstrap empirical Bayes confidence interval. A Monte Carlo simulation study demonstrates the superiority of the proposed method over other competing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call