Abstract

This study investigates the dynamics of the inflation rate (INFL) in Tanzania spanning from 1990 to 2021 using advanced time series analysis techniques. The dataset sourced from the World Bank online database serves as the basis for analytical exploration. Initially, the Autoregressive Integrated Moving Average (ARIMA) model is applied to understand underlying patterns in the INFL data. Transitioning to Seasonal ARIMA (SARIMA) modeling encounters challenges due to the absence of pronounced seasonality or clear trends. Unit root tests, including the Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests, assess the stationarity of the data. Following the identification of non-stationarity, differencing is employed to achieve stationarity. Estimation of ARIMA models (ARIMA (1,1,1) and ARIMA (2,1,1)) is conducted, with diagnostic checks confirming the suitability of the ARIMA (1,1,1) model. The study contributes to the understanding of inflation dynamics and facilitates evidence-based economic policymaking in Tanzania.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.