Abstract
AbstractDue to the wide range of compositional possibilities in the high-entropy alloy (HEA) field, empirical models and the CALPHAD method have been implemented to efficiently design HEAs. Although most design strategies have been tested on as-cast alloys, their validation for thermal sprayed HEA coatings is lacking. In this work, empirical models and the CALPHAD method under equilibrium and non-equilibrium conditions are assessed for phase prediction in five HEAs in the as-cast, laser clad and thermal sprayed conditions. High-velocity oxygen fuel coatings were prepared for these five HEAs, and their phases were identified by the x-ray diffraction analysis. These processes, even though their cooling rates vary significantly, show similar phase formation as indicated by a literature review and the current experimental study. The CALPHAD equilibrium calculation predicted most of the phases at specified temperatures. Furthermore, the CALPHAD-based non-equilibrium simulations correctly predicted the major phases present in the HEA coatings. The empirical models also show good prediction capability, but the intermetallic sigma phase is problematic for the parameter-based models. Therefore, the CALPHAD method can be used to efficiently design and develop HEAs prepared under conditions that encompass rapid cooling, such as occurring during thermal spray processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.