Abstract
We present a methodology for Bayesian analysis of software quality. We cast our research in the broader context of constructing a causal framework that can include process, product, and other diverse sources of information regarding fault introduction during the software development process. In this paper, we discuss the aspect of relating internal product metrics to external quality metrics. Specifically, we build a Bayesian network (BN) model to relate object-oriented software metrics to software fault content and fault proneness. Assuming that the relationship can be described as a generalized linear model, we derive parametric functional forms for the target node conditional distributions in the BN. These functional forms are shown to be able to represent linear, Poisson, and binomial logistic regression. The models are empirically evaluated using a public domain data set from a software subsystem. The results show that our approach produces statistically significant estimations and that our overall modeling method performs no worse than existing techniques.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have