Abstract

ContextRecently, network measures have been proposed to predict fault-prone modules. Leveraging the dependency relationships between software entities, network measures describe the structural features of software systems. However, there is no consensus about their effectiveness for fault-proneness prediction. Specifically, the predictive ability of network measures in effort-aware context has not been addressed. ObjectiveWe aim to provide a comprehensive evaluation on the predictive effectiveness of network measures with the effort needed to inspect the code taken into consideration. MethodWe first constructed software source code networks of 11 open-source projects by extracting the data and call dependencies between modules. We then employed univariate logistic regression to investigate how each single network measure was correlated with fault-proneness. Finally, we built multivariate prediction models to examine the usefulness of network measures under three prediction settings: cross-validation, across-release, and inter-project predictions. In particular, we used the effort-aware performance indicators to compare their predictive ability against the commonly used code metrics in both ranking and classification scenarios. ResultsBased on the 11 open-source software systems, our results show that: (1) most network measures are significantly positively related to fault-proneness; (2) the performance of network measures varies under different prediction settings; (3) network measures have inconsistent effects on various projects. ConclusionNetwork measures are of practical value in the context of effort-aware fault-proneness prediction, but researchers and practitioners should be careful of choosing whether and when to use network measures in practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.