Abstract

Many fault-proneness prediction models have been proposed in literature to identify fault-prone code in software systems. Most of the approaches use fault data history and supervised learning algorithms to build these models. However, since fault data history is not always available, some approaches also suggest using semi-supervised or unsupervised fault-proneness prediction models. The HySOM model, proposed in literature, uses function-level source code metrics to predict fault-prone functions in software systems, without using any fault data. In this paper, we adapt the HySOM approach for object-oriented software systems to predict fault-prone code at class-level granularity using object-oriented source code metrics. This adaptation makes it easier to prioritize the efforts of the testing team as unit tests are often written for classes in object-oriented software systems, and not for methods. Our adaptation also generalizes one main element of the HySOM model, which is the calculation of the source code metrics threshold values. We conducted an empirical study using 12 public datasets. Results show that the adaptation of the HySOM model for class-level fault-proneness prediction improves the consistency and the performance of the model. We additionally compared the performance of the adapted model to supervised approaches based on the Naive Bayes Network, ANN and Random Forest algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call