Abstract
The constitutive model of rock materials can describe the mechanical behavior of rocks in creep tests. Also, it is one of the important means to study the deformation and strength characteristics of rocks in complex stress environments. This paper is based on the analysis of the porosity variation characteristics of the internal structure under the coupling effect of rock hydro-mechanical properties. The concept of the hydro-mechanical properties variable is proposed, and the relationship between the coupling variable, damage and plastic deformation is established. By introducing the coupling variable, instantaneous damage variable and time-dependent damage variable into the yield surface equation, as well as the plastic potential energy equation and the stiffness matrix of the elastic–plastic creep constitutive equation, a hydro-mechanical properties creep damage coupling model was established to simulate the creep mechanical properties of rock under coupling. Based on the triaxial creep test results of granite gneiss, the model parameters are determined. By comparing the test results with numerical results, it was revealed that the model can better describe the creep mechanical properties of rocks under the coupling effect of hydromechanical properties.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have