Abstract
A beautiful piece of mathematics, Noether's Theorem touches on every aspect of physics. Emmy Noether proved her theorem in 1915 and published it in 1918. This profound concept demonstrates the connection between conservation laws and symmetries. For instance, the theorem shows that a system invariant under translations of time, space, or rotation will obey the laws of conservation of energy, linear momentum, or angular momentum, respectively. This exciting result offers a rich unifying principle for all of physics. Dwight E. Neuenschwander's introduction to the theorem's genesis, applications, and consequences artfully unpacks its universal importance and unsurpassed elegance. Drawing from over thirty years of teaching the subject, Neuenschwander uses mechanics, optics,geometry, and field theory to point the way to a deep understanding of Noether's Theorem. The three sections provide a step-by-step, simple approach to the less-complex concepts surrounding the theorem, in turn instilling the knowledge and confidence needed to grasp the full wonder it encompasses. Illustrations and worked examples throughout each chapter serve as signposts on the way to this apex of physics. Noether's Theorem is an essential principle of post-introductory physics. This handy guide includes end-of-chapter questions for review and appendixes detailing key related physics concepts for further study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.