Abstract

Aimwas to assess whether a comprehensive approach linking existing knowledge with monitoring and modeling can provide an improved insight into coastal and marine plastics pollution. We focused on large micro- and mesoplastic (1–25 mm) and selected macroplastic items. Emission calculations, samplings in the Warnow river and estuary (water body and bottom sediments) and a flood accumulation zone monitoring served as basis for model simulations on transport and behavior in the entire Baltic Sea. Considered were the most important pathways, sewage overflow and stormwater. The coastline monitoring together with calculations allowed estimating plastics emissions for Rostock city and the Warnow catchment. Average concentrations at the Warnow river mouth were 0.016 particles/m³ and in the estuary 0.14 particles/m³ (300 µm net). The estuary and nearby Baltic Sea beaches were hot-spots for plastic accumulation with 6–31 particles/m². With increasing distance from the estuary, the concentrations dropped to 0.3 particles/m². This spatial pattern, the plastic pollution gradients and the observed annual accumulation values were consistent with the model results. Indicator items for sewer overflow and stormwater emissions exist, but were only found at low numbers in the environment. The considered visible plastics alone can hardly serve as indicator for microplastic pollution (<1 mm). The use of up-scaled emission data as input for Baltic Sea model simulations provided information on large scale emission, transport and deposition patterns of visible plastics. The results underline the importance of plastic retention in rivers and estuaries.

Highlights

  • The Baltic Sea is one of the largest brackish water bodies in the world and, despite all efforts, a pollution hot-spot (HELCOM 2018a)

  • We focused on the large micro- and mesoplastic size class (1–25 mm) and in the following call this class “visible plastics”

  • The emission of visible plastics via these pathways can hardly be estimated based on literature and calculations, because visible plastics can have multiple sources and can stem from fragmentation

Read more

Summary

Introduction

The Baltic Sea is one of the largest brackish water bodies in the world and, despite all efforts, a pollution hot-spot (HELCOM 2018a). Depending on the quality of wastewater treatment, Baresel and Olshammar (2019) assume a microplastics retention between 85 and 98%. This efficient sewage treatment is one explanation for the relatively low estimated microplastic emissions to the Baltic Sea (Siegfried et al, 2017). Despite that, Baresel and Olshammar (2019) conclude that the annual discharge of microplastics from sewer overflows can be in the same magnitude as the emissions with all treated wastewater. For plastics above 1 mm in size, large micro-, meso-, and some macroplastics, sewer overflows and Environmental Management stormwater are very likely by far the most important emission pathway in the Baltic region

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call