Aquatic Sciences | VOL. 82
Read

Emission of greenhouse gases from French temperate hydropower reservoirs

Publication Date Apr 30, 2020

Abstract

The emission of CO2 and CH4 by diffusion, bubbling and downstream was measured in ten reservoirs representative of the diversity of French hydropower reservoirs in 2016. In all reservoirs, higher fluxes were measured in summer than in spring and winter. Low fluxes were measured in alpine reservoirs as compared to run-of-the-river and storage reservoirs. The low temperatures as well as the low organic matter input from the watershed explained this observation. Bubbling was higher in run-of-the-river reservoirs, as compared to storage reservoirs. This was related to a higher ratio between the length of wooded river network in the watershed, and the reservoir surface area. This ratio was considered as a proxy for allochthonous particulate organic matter input per reservoir surface unit and its accumulation in the sediments. In the larger storage reservoirs, this preferential sedimentation area was limited to the river-reservoir transition zone, the extent of which is primarily a function of reservoir hydrodynamic and morphological parameters. Conversely, the long water residence time in deep storage reservoirs favoured greenhouse gas (GHG) accumulation in the bottom water and diffusion and downstream pathways as compared to bubbling. Classical drivers of GHG emissions in large reservoirs partly failed to explain our measurements, especially for bubbling which seemed to be primarily controlled by allochthonous particulate organic matter input per reservoir surface area. This may results from the small size and the large diversit...

Concepts

Reservoir Surface Area Low Organic Matter Input Storage Reservoirs Organic Input Alpine Reservoirs Water Residence Time Organic Matter Input Hydropower Reservoirs Emission Of Greenhouse Gases Reservoir Surface

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Sep 19, 2022 to Sep 25, 2022

R DiscoverySep 26, 2022
R DiscoveryArticles Included:  5

Disaster Prevention and Management ISSN: 0965-3562 Article publication date: 20 September 2022 This paper applies the theory of cascading, interconnec...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.