Abstract
The emission of CO2 and CH4 by diffusion, bubbling and downstream was measured in ten reservoirs representative of the diversity of French hydropower reservoirs in 2016. In all reservoirs, higher fluxes were measured in summer than in spring and winter. Low fluxes were measured in alpine reservoirs as compared to run-of-the-river and storage reservoirs. The low temperatures as well as the low organic matter input from the watershed explained this observation. Bubbling was higher in run-of-the-river reservoirs, as compared to storage reservoirs. This was related to a higher ratio between the length of wooded river network in the watershed, and the reservoir surface area. This ratio was considered as a proxy for allochthonous particulate organic matter input per reservoir surface unit and its accumulation in the sediments. In the larger storage reservoirs, this preferential sedimentation area was limited to the river-reservoir transition zone, the extent of which is primarily a function of reservoir hydrodynamic and morphological parameters. Conversely, the long water residence time in deep storage reservoirs favoured greenhouse gas (GHG) accumulation in the bottom water and diffusion and downstream pathways as compared to bubbling. Classical drivers of GHG emissions in large reservoirs partly failed to explain our measurements, especially for bubbling which seemed to be primarily controlled by allochthonous particulate organic matter input per reservoir surface area. This may results from the small size and the large diversity of the studied reservoirs as compared to the larger systems classically used for global estimates.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have