Abstract

Compact solid-state sources of terahertz (THz) radiation are being sought for sensing, imaging, and spectroscopy applications across the physical and biological sciences. We demonstrate that coherent continuous-wave THz radiation of sizable power can be extracted from intrinsic Josephson junctions in the layered high-temperature superconductor Bi2Sr2CaCu2O8. In analogy to a laser cavity, the excitation of an electromagnetic cavity resonance inside the sample generates a macroscopic coherent state in which a large number of junctions are synchronized to oscillate in phase. The emission power is found to increase as the square of the number of junctions reaching values of 0.5 microwatt at frequencies up to 0.85 THz, and persists up to approximately 50 kelvin. These results should stimulate the development of superconducting compact sources of THz radiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call