Abstract
We consider the emission processes in the large-scale jets of powerful quasars based on the results obtained with the VLA, Spitzer, Hubble, and Chandra. We show that two archetypal jets, 3C 273 and PKS 1136–135, have two distinct spectral components on large-scales: (1) the low-energy (LE) synchrotron spectrum extending from radio to infrared, and (2) the high-energy (HE) component arising from optical and extending to X-rays. The X-ray emission in quasar jets is often attributed to inverse-Compton scattering of cosmic microwave background (CMB) photons by radio-emitting electrons in a highly relativistic jet. However, recent data prefer synchrotron radiation by a second distinct electron population as the origin of the HE component. We anticipate that optical polarimetry with Hubble will establish the synchrotron nature of the HE component. Gamma-ray observations with GLAST (renamed as the Fermi Gamma-ray Space Telescope), as well as future TeV observations, are expected to place important constraints on the jet models.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have