Abstract
Household combustion of biomass straw for cooking or heating is one of the most important emission sources of intermediate volatility and semi-volatile organic compounds (I/SVOCs). However, there are limited studies on the emission factors (EFs) and speciation profiles of I/SVOCs from household stoves burning biomass straw. In this study, experiments were conducted in a typical Chinese stove to test the EFs and species of I/SVOCs in three commonly used straws. It was revealed that EFs of I/SVOCs emitted from the burning of corn straw, rice straw, and wheat straw were 6.7, 1.9, and 9.8 g/kg, respectively, which accounted for 48.3 %, 36.8 %, and 48.6 % of total organic compounds emitted. Particulate organic compounds were dominated by ketones, oxygenated aromatics, acids, esters, and nitrogen-containing compounds, whereas the gaseous phase was dominated by aldehydes, acids, and aromatics. Although I/SVOCs only accounted for 18.1–23.6 % of the gaseous emissions from burning of straw, they represented 64.8–72.9 % of the secondary organic aerosol formation potential (SOAFP). The EFs of 16 priority polycyclic aromatic hydrocarbons (PAHs) were 362.0, 262.5, and 1145.2 mg/kg for corn straw, rice straw, and wheat straw, respectively, among which 3-ring and 4-ring PAHs were the main components. Thus, the results of this study provide new reliable I/SVOCs data that are useful for the development of an accurate emission inventory of organic compounds, simulation of secondary organic aerosol (SOA) formation, and health risk assessment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.