Abstract
Coal-fired power plants (CFPPs) and waste incineration power plants (WIPPs) represent a large portion of polycyclic aromatic hydrocarbons (PAHs) sources in the environment, among which halogenated PAHs (HPAHs) are more toxic to the human body compared with their corresponding parent PAHs. In the current work, we investigated the occurrence, formation mechanism, and toxicity effects of HPAHs in the coal and waste combustion products from three CFPPs and one WIPP. The results indicate that the contents of chlorinated PAHs (Cl-PAHs) in the fly ash from the CFPPs and WIPP were 1.06-1.67 ng·g-1 and 2.76 ng·g-1, respectively, and the contents of brominated PAHs (Br-PAHs) in the fly ash from the CFPPs and WIPP were 26.4-44.2 ng·g-1 and 6.31 ng·g-1, respectively. The HPAH contents in the fly ash from the WIPP were significantly higher than those from the CFPPs primarily due to the abundant plastics in the domestic waste, represented by polyvinyl chloride, resulting in the formation of Cl-PAHs during combustion. The HPAH contents in the fly ash from the pulverized coal-fired (PC) boiler were significantly higher than those from the circulating fluidized bed (CFB) boiler mostly due to the higher combustion temperature operated in the PC boiler. The HPAHs in the fly ash from coal combustion were predominantly 7-BrBaA and 9-ClPhe, and those from domestic combustion were predominantly 9-BrPhe and 2-ClAnt. In addition, the contents of 7-BrBaA and 9,10-Br2 Ant in the coal combustion fly ash were significantly higher than those in domestic waste combustion fly ash, whereas 2-BrFle exhibited a contrasting profile. The content of Br-PAHs in the fly ash treated by semi-dry deacidification was twice that in dust removal fly ash but significantly increased in the chelating agent stabilization fly ash. The Pearson correlation analysis indicated the the formation mechanism of Cl-PAHs and Br-PAHs were the same but a secondary formation of HPAHs during the chelating agent stabilization of the fly ash was deduced. The TEQ values of the HPAHs in the fly ash (8.87×10-3-15.0×10-3 ng·g-1) from the WIPP were similar to those in the fly ash from the CFPPs (10.0×10-3 ng·g-1), which were significantly reduced in the fly ash treated by semi-dry deacidification due to the removal of 7-BrBaA. Moreover, the TEQ values of the HPAHs in the fly ash increased 5.4 times after the chelating agent stabilization. The ecological risk should be considered for the CFPP fly ash due to their massive amount of discharge and high TEQ values.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have