Abstract

The objective of this study is to investigate the emission mechanism of radiophotoluminescence (RPL) in the Ag +-doped phosphate glass (glass dosimeter), which is now used as the individual radiation dosimeter, because the emission mechanism of RPL in the glass dosimeter was not fully understood. Optical properties such as RPL emission and excitation spectra and change of RPL spectrum as a function of X-ray irradiation dose were measured for commercially available glass dosimeter. In this study, we discuss the emission mechanism of two RPL peaks at about 2.70 eV (460 nm) and 2.21 eV (560 nm), based on the fact that electrons and holes produced by X-ray irradiation are trapped at Ag + ions to produce Ag 0 and Ag 2+ ions, respectively, when the Ag +-doped phosphate glass is exposed to X-ray. We propose the emission mechanism of RPL peaks at about 2.70 and 2.21 eV, regarding Ag 2+ and Ag 0 ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.