Abstract

Electromagnetic ion-cyclotron (EMIC) instability has been studied using the general loss-cone distribution function by investigating the trajectories of charged particles and using the method of particle aspect analysis. A low β (ratio of plasma pressure to magnetic pressure) plasma consisting of resonant and non-resonant particles has been considered. It is assumed that the resonant particles participate in energy exchange with the wave, whereas non-resonant particles support the oscillatory motion of the wave. The wave is assumed to propagate parallel to the static magnetic field. The effects of steepness of loss-cone distribution with thermal anisotropy are discussed. The growth rate, perpendicular and parallel resonant energies of the particles and marginal instability condition are derived. The effect of general loss-cone distribution function is to enhance the growth rate of EMIC waves. The results are interpreted for the space plasma parameters appropriate to the plasma-pause region of the earth's magnetoplasma. The results of the work is consistent for EMIC emissions observation by SAMPEX and CRRES satellite around the plasma-pause region as reported by Bortnik et al. [Bortnik, J., Thorne, R.M., O’Brien, T.P., Green, J.C., Strongeway, R.J., Shprits, Y.Y., Baker, D.N., 2006. Observation of two distinct, rapid loss mechanisms during the 20 November 2003 radiation belt dropout event. J. Geophys. Res. 111, A12216, doi:10.1029/2006JA011802] and Xinlin et al. [Xinlin, Li., Baker, D.N., O’Brien, T.P., Xie, L., Zong, Q.G., 2006. Correlation between the inner edge of outer radiation belt electrons and the innermost plasmapause location. Geophys. Res. Lett. 33, L14107, doi:10.1029/2006GL026294].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call