Abstract

The recovery of hand motion is one of the most challenging aspects in stroke rehabilitation. This paper presents an initial approach to robot-assisted hand-motion therapies. Our goal was twofold: firstly, we have applied machine learning methods to identify and characterize finger motion patterns from healthy individuals. To this purpose, Electromyographic (EMG) signals have been acquired from flexor and extensor muscles in the forearm using surface electrodes. Time and frequency features were used as inputs to machine learning algorithms for recognition of six hand gestures. In particular, we compared the performance of Artificial Neural Networks (ANN), Support Vector Machines (SVM) and k-Nearest Neighbor (k-NN) algorithms for classification. Secondly, each identified gesture was turned into a joint reference trajectory by applying interpolation methods. This allowed us to reconstruct the hand/finger motion kinematics and to simulate the dynamics of each motion pattern. Experiments were carried out to create an EMG database from 20 control subjects, and a VICON camera tracking system was used to validate the accuracy of the proposed system. The average correlation between the EMG-based generated joint trajectories and the tracked hand-motion was 0.91. Furthermore, statistical analysis applied to 14 different SVM, ANN and k-NN configurations showed that Fine k-NN and Weighted k-NN have a better performance for the classification of gestures (98% of accuracy). In a future, the trajectories controlled by EMG signals could be applied to an exoskeleton or hand-robotic prosthesis for rehabilitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.