Abstract

Secondary morphological and mechanical property changes in the muscle-tendon unit at the ankle joint are often observed in post-stroke individuals. These changes may alter the force generation capacity and affect daily activities such as locomotion. This work aimed to estimate subject-specific muscle-tendon parameters in individuals after stroke by solving the muscle redundancy problem using direct collocation optimal control methods based on experimental electromyography (EMG) signals and measured muscle fiber length. Subject-specific muscle-tendon parameters of the gastrocnemius, soleus, and tibialis anterior were estimated in seven post-stroke individuals and seven healthy controls. We found that the maximum isometric force, tendon stiffness and optimal fiber length in the post-stroke group were considerably lower than in the control group. We also computed the root mean square error between estimated and experimental values of muscle excitation and fiber length. The musculoskeletal model with estimated subject-specific muscle tendon parameters (from the muscle redundancy solver), yielded better muscle excitation and fiber length estimations than did scaled generic parameters. Our findings also showed that the muscle redundancy solver can estimate muscle-tendon parameters that produce force behavior in better accordance with the experimentally-measured value. These muscle-tendon parameters in the post-stroke individuals were physiologically meaningful and may shed light on treatment and/or rehabilitation planning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.