Abstract

EMBRYONIC FLOWER1 (EMF1) is a plant-specific gene crucial to Arabidopsis vegetative development. Loss of function mutants in the EMF1 gene mimic the phenotype caused by mutations in Polycomb Group protein (PcG) genes, which encode epigenetic repressors that regulate many aspects of eukaryotic development. In Arabidopsis, Polycomb Repressor Complex 2 (PRC2), made of PcG proteins, catalyzes trimethylation of lysine 27 on histone H3 (H3K27me3) and PRC1-like proteins catalyze H2AK119 ubiquitination. Despite functional similarity to PcG proteins, EMF1 lacks sequence homology with known PcG proteins; thus, its role in the PcG mechanism is unclear. To study the EMF1 functions and its mechanism of action, we performed genome-wide mapping of EMF1 binding and H3K27me3 modification sites in Arabidopsis seedlings. The EMF1 binding pattern is similar to that of H3K27me3 modification on the chromosomal and genic level. ChIPOTLe peak finding and clustering analyses both show that the highly trimethylated genes also have high enrichment levels of EMF1 binding, termed EMF1_K27 genes. EMF1 interacts with regulatory genes, which are silenced to allow vegetative growth, and with genes specifying cell fates during growth and differentiation. H3K27me3 marks not only these genes but also some genes that are involved in endosperm development and maternal effects. Transcriptome analysis, coupled with the H3K27me3 pattern, of EMF1_K27 genes in emf1 and PRC2 mutants showed that EMF1 represses gene activities via diverse mechanisms and plays a novel role in the PcG mechanism.

Highlights

  • Polycomb group (PcG) proteins are epigenetic repressors implicated in various developmental and cellular processes [1,2]

  • We have previously shown that EMBRYONIC FLOWER1 (EMF1) regulates the flower MADS box genes AG, AP3, and PI via direct interaction with their chromatin [34,36]

  • To identify all EMF1 target genes in Arabidopsis seedlings, we performed Chromatin Immunoprecipitation (ChIP) followed by microarray analysis (ChIP-chip), using a transgenic Arabidopsis with a functional transgene – EMF1 tagged with 3FLAG and expressed under its own promoter (EMF1::EMF13FLAG) that can rescue emf1 mutants [36]

Read more

Summary

Introduction

Polycomb group (PcG) proteins are epigenetic repressors implicated in various developmental and cellular processes [1,2]. PcG proteins function in multi-subunit protein complexes: Polycomb Repressor Complex 1 (PRC1) and PRC2 [3], the core components of which are conserved from Drosophila to humans. PRC2 marks the target gene by trimethylating histone H3 at lysine 27 (H3K27me3) through the E(z) SET domain [4,5,6,7,8]. PRC1, which binds the H3K27me methyl marks and docks on nucleosomes modified by PRC2, inhibits transcription and blocks remodeling of the target nucleosomes, resulting in gene silencing [9,10,11]. Genome-wide studies confirmed co-localization of PRC1 and PRC2 on target genes. PcG action is counteracted by Trithorax Group (trxG) protein complexes [14]. PcG and trxG complexes maintain repressive and active states of chromatin, respectively [14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call