Abstract

Water samples from a local water treatment plant were analyzed, using gas chromatography Fourier transform ion cyclotron resonance mass spectrometry (GC/FT-ICR MS), to identify potential disinfection byproducts (DBPs). Both liquid-liquid extraction (LLE) and solid-phase microextraction (SPME) techniques were used for sample preparation prior to GC/MS analyses. Based on the averaged mass measurement accuracy (MMA) of better than five parts-per-million (<5 ppm), multiple solvent artifacts were identified. It is shown that solventless SPME can be utilized to reduce potential interferences from solvent stabilizers. Six DBPs were detected and their molecular compositions were assigned at a high level of confidence. At the ppb concentration ranges and in the broadband mass spectral detection mode, internally calibrated mass spectra provided concurrent high resolution (resolving power M/deltaM50% > 30,000 at m/z values -110) and MMA of better than one part-per-million (MMA < 1 ppm). The use of thermochemical data, such as proton affinities, as a complementary tool to enhance analytical resolution is also demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.