Abstract
Featuring a combination of ultrathin and lightweight properties, excellent mechanical flexibility, low power-consumption, and widely tunable saturated emission, flexible displays have opened up a new possibility for optoelectronics. The demands for flexible displays are growing on a continual basis due not only to their successful commercialization but, more importantly, their endless possibilities for wearable integrated systems. Up to now, self-emissive technologies for displays, flexible active-matrix organic light-emitting diodes (flex-AMOLED), flexible quantum dot light-emitting diodes (flex-QLEDs), and flexible perovskite light-emitting diodes (flex-PeLEDs) have been widely reported, but despite the significant progress made in these technologies, enormous obstacles and challenges remain for the vision of truly wearable applications, in particular with flex-QLEDs and flex-PeLEDs. Here, a review of the recent progress of all three self-emissive technologies for flexible displays is conducted, including the emissive active materials, device structures and approaches to manufacturing, the flexible substrates, and conductive electrodes, as well as the encapsulation techniques. The fast-paced improvement made to the efficiency of flexible devices in recent years is also summarized. The review concludes by making suggestions on the future development in this area, and is expected to help researchers in gaining a comprehensive understanding about the newly emerging technologies for flexible displays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.