Abstract
Posttranscriptional gene regulation is a rapid and effective way to mediate the expression of inflammatory genes. CCCH-type zinc finger proteins are nucleotide-binding molecules involved in RNA metabolism pathways such as RNA splicing, polyadenylation, and messenger RNA (mRNA) decay. Among these proteins, tristetraproline, Roquins, and Regnase-1/monocyte chemotactic protein-1-induced protein-1 have been recently reported to be responsible for mRNA instability. They bind to mRNAs harboring unique motifs and induce mRNA decay. In this review we summarize current progress regarding the specific characteristics of sequences and structures in the 3' untranslated regions of mRNAs that are recognized by tristetraproline, Roquins, and Regnase-1. The target mRNAs to be destabilized by those CCCH-type zinc finger proteins also are included. Notably, most target mRNAs encode cytokines and other inflammatory mediators, suggesting the immune regulation role of CCCH zinc finger proteins. Mice carrying a genetic null allele or modification of these genes display severe symptoms of autoimmune diseases. Taken together, data show that CCCH-type zinc finger proteins play a crucial role in regulating immune response by targeting multiple mRNAs, and including decay. Further understanding the functions of these proteins may provide new therapeutic targets for immune-related disorders in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.