Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that post-transcriptionally regulate cellular gene expression. MiRNAs bind to the 3' untranslated region (UTR) of target mRNA to inhibit protein translation or in some instances cause mRNA degradation. The binding of the miRNA to the 3' UTR of the target mRNA is mediated by a 2-8 nucleotide seed sequence at the 5' end of miRNA. While the role of miRNAs as cellular regulatory molecules is well established, identification of the target mRNAs with functional relevance remains a challenge. Bioinformatic tools have been employed to predict sequences within the 3' UTR of mRNAs as potential targets for miRNA binding. These tools have also been utilized to determine the evolutionary conservation of such sequences among related species in an attempt to predict functional role. However, these computational methods often generate false positive results and are limited to predicting canonical interaction between miRNA and mRNA. Therefore, experimental procedures that measure direct binding of miRNA to its mRNA target are necessary to establish functional interaction. In this report, we describe a sensitive method for validating direct interaction between the cellular miRNA miR-125b and the 3' UTR of PARP-1 mRNA. We elaborate a protocol in which synthetic biotinylated-miRNA mimics were transfected into mammalian cells and the miRNA-mRNA complex in the cellular lysate was pulled down with streptavidin-coated magnetic beads. Finally, the target mRNA in the pulled-down nucleic acid complex was quantified using a qPCR-based strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.