Abstract
Degradation technologies applied to emerging organic contaminants from human activities are one of the major water challenges in the contamination legacy. Triclosan is an emerging contaminant, commonly used as antibacterial agent in personal care products. Triclosan is stable, lipophilic and it is proved to have ecotoxicologic effects in organics. This induces great concern since its elimination in wastewater treatment plants is not efficient and its by-products (e.g. methyl-triclosan, 2,4-dichlorophenol or 2,4,6-trichlorophenol) are even more hazardous to several environmental compartments. This work provides understanding of two different electrochemical reactors for the degradation of triclosan and its derivative by-products in effluent. A batch reactor and a flow reactor (mimicking a secondary settling tank in a wastewater treatment plant) were tested with two different working anodes: Ti/MMO and Nb/BDD. The degradation efficiency and kinetics were evaluated to find the best combination of current density, electrodes and set-up design. For both reactors the best electrode combination was achieved with Ti/MMO as anode. The batch reactor at 7 mA/cm2 during 4 h attained degradation rates below the detection limit for triclosan and 2,4,6-trichlorophenol and, 94% and 43% for 2,4-dichlorophenol and methyl triclosan, respectively. The flow reactor obtained, in approximately 1 h, degradation efficiencies between 41% and 87% for the four contaminants. This study suggests an alternative technology for emerging organic contaminants degradation, since the combination of a low current density with the flow and matrix induced disturbance increases and speeds up the compounds’ elimination in a real environmental matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.