Abstract
AbstractBrain‐inspired neuromorphic computing is recognized as a promising technology for implementing human intelligence in hardware. Neuromorphic devices, including artificial synapses and neurons, are regarded as essential components for the construction of neuromorphic hardware systems. Recently, optoelectronic neuromorphic devices are increasingly highlighted due to their potential applications in next‐generation artificial visual systems, attributed to their integrated sensing, computing, and memory capabilities. In this review, recent advancements in optoelectronic synapses and neurons are examined, with an emphasis on their structural characteristics, operational principles, and the replication of neuromorphic functions. For optoelectronic synaptic devices, such as memristor‐ and transistor‐based ones, attention is given to the two primary weight update modes: the light‐electricity synergistic mode and the all‐optical mode. Optoelectronic neurons are discussed in terms of different device types, including threshold switch neurons and semiconductor laser neurons. Last, the challenges that impede the progress of optoelectronic neuromorphic devices are identified, and potential future directions are suggested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.