Abstract

Conventional computers based on the von Neumann architecture are inefficient in parallel computing and self-adaptive learning, and therefore cannot meet the rapid development of information technology that needs efficient and high-speed computing. Owing to the unique advantages such as high parallelism and ultralow power consumption, bioinspired neuromorphic computing can have the capability of breaking through the bottlenecks of conventional computers and is now considered as an ideal option to realize the next-generation artificial intelligence. As the hardware carriers that allow the implementing of neuromorphic computing, neuromorphic devices are very critical in building neuromorphic chips. Meanwhile, the development of human visual systems and optogenetics also provides a new insight into how to study neuromorphic devices. The emerging optoelectronic neuromorphic devices feature the unique advantages of photonics and electronics, showing great potential in the neuromorphic computing field and attracting more and more attention of the scientists. In view of these, the main purpose of this review is to disclose the recent research advances in optoelectronic neuromorphic devices and the prospects of their practical applications. We first review the artificial optoelectronic synapses and neurons, including device structural features, working mechanisms, and neuromorphic simulation functions. Then, we introduce the applications of optoelectronic neuromorphic devices particularly suitable for the fields including artificial vision systems, artificial perception systems, and neuromorphic computing. Finally, we summarize the challenges to the optoelectronic neuromorphic devices, which we are facing now, and present some perspectives about their development directions in the future.

Highlights

  • Schematic illustration of the structure of photoelectric neuron based on GaAs[40]

  • 2 2000122 [82] Hong S, Choi S H, Park J, Yoo H, Oh J Y, Hwang E, Yoon D H, Kim S 2020 ACS Nano 14 9796 [83] Zhou F C, Zhou Z, Chen J W, Choy T H, Wang J L, Zhang N, Lin Z Y, Yu S M, Kang J F, Wong H P, Chai Y 2019 Nat. Nanotechnol

Read more

Summary

III Long-term depression

图 4 基于忆阻器实现的全光型突触器件 (a) 基于 IGZO 全光控忆阻器的工作模式 [30]; (b) 基于 IGZO 全光控忆阻器电导可逆 调控特性及循环稳定性 [30]; (c) 基于 IGZO 全光控忆阻器的电导态保持特性, 分别通过光 SET 和光 RESET 获得 [30]; (d) 基于 AgTiO2 纳米复合材料的忆阻器在可见光刺激下产生的 LTP 行为 [64]; (e) 基于 Ag-TiO2 纳米复合材料的忆阻器在紫外光刺激下产生 的 LTD 行为 [64]. 如图 4(d) 和图 4(e) 所示, 器件在可见光照射下电流增大, 光 照撤除后, 电流开始快速衰减直至趋于稳定, 稳定 后的电流值大于初始电流值, 器件表现出一定的 LTP 特性; 器件在紫外光照射下电流同样先增大, 然而当光撤除后, 电流会快速衰减到小于初始电流 的值, 器件表现出一定的 LTD 特性. 此外, 基于 ZnO/PbS QDs 异质结的光电忆阻器, 可在紫外光 照射下模拟突触 LTP 行为, 在红外光照射下模拟 突触的 STP 特性 [65]. 其中, 在波 长 790 nm 的近红外光脉冲下, 该器件表现出 LTP 行为, 而在 Vgs 施加电脉冲时, 其能够实现 LTD 行 为, 如图 5(c) 所示. 其中, 光生空穴被转移到 Gr 中, 电子被输运 至 PQDs 内部. 随着电子在 PQDs 不断累积, 引起 光栅效应, 使 Gr 中产生更多空穴, 导致器件电流 增加. 图 5(f) 展示了器件电导在光脉冲刺激下的连续增加, 模拟 突触 LTP 行为, 在源极电脉冲作用下, 电导逐渐 降低, 模拟突触 LTD 行为. 除此之外, 研究人员基于酞菁铜/对六苯基 [69]、 氧化石墨烯 [70]、硼掺杂的硅纳米晶体 [71]、铟锌氧化 物 [72] 等材料设计了具有不同光电特性的光电晶体 管, 并且通过光照与电压协同作用成功实现了器件 电导的可逆调控

35 Photonic
Pulse width=20 ms
B PPC Bi2O2Se
S S 2 S
C2 100 C0
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call