Abstract
The recent observations of nonlinear Hall effect in time-reversal symmetry protected systems and on the surface of three-dimensional topological insulators due to an in-plane magnetic field have attracted immense experimental and theoretical investigations in two-dimensional transition metal dichalcogenides and Weyl semimetals. The origin of this type of second order effect has been attributed to the emergence of a Berry curvature dipole, which requires a low-symmetry environment. Here, we propose a mechanism for generating such a second order nonlinear Hall effect in Kane-Mele two-dimensional topological insulators due to spatial and time reversal symmetry breaking in the presence of Zeeman and Rashba couplings. By actively tuning the energy gaps with external electromagnetic fields we also demonstrate that the nonlinear Hall effect shows remarkable signatures of topological phase transitions existing in the considered two-dimensional systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.