Abstract

The recent observations of nonlinear Hall effect in time-reversal symmetry protected systems and on the surface of three-dimensional topological insulators due to an in-plane magnetic field have attracted immense experimental and theoretical investigations in two-dimensional transition metal dichalcogenides and Weyl semimetals. The origin of this type of second order effect has been attributed to the emergence of a Berry curvature dipole, which requires a low-symmetry environment. Here, we propose a mechanism for generating such a second order nonlinear Hall effect in Kane-Mele two-dimensional topological insulators due to spatial and time reversal symmetry breaking in the presence of Zeeman and Rashba couplings. By actively tuning the energy gaps with external electromagnetic fields we also demonstrate that the nonlinear Hall effect shows remarkable signatures of topological phase transitions existing in the considered two-dimensional systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call