Abstract

Blood tests have been a powerful tool for the clinical analysis of many diseases. With the advances in microfluidic technology, two more specific indicators from the circulation system, namely, emerging "liquid biopsy" of circulating tumor cells (CTCs) and fetal nucleated red blood cells (fNRBCs), can be screened and analyzed as a simple blood test for the noninvasive diagnosis of cancers as well as fetal disorders. The unique feature of precisely manipulating a trace of fluid endows microfluidic devices with the ability to isolate CTCs or fNRBCs from numerous blood cells with high performance, which undoubtedly facilitates biomedical applications of these two kinds of rare cells. In this review, advanced developments in microfluidic technologies focusing on the detection and sorting of rare CTCs and fNRBCs from peripheral blood are summarized. The development of microfluidic devices incorporated with various multifunctional microstructures and nanomaterials for enhancing the sensitivity, purity, and viability of CTC or fNRBC detection enables CTC molecular analysis and fNRBC-based noninvasive prenatal diagnosis (NIPD). These microfluidics-based approaches provide great potential opportunities in noninvasive cancer diagnosis or NIPD applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call