Abstract
Vocal fold (VF) scarring, a complex problem in laryngology, results from injury and inflammation of the layered architecture of the VFs. The resultant voice hoarseness, for which successful therapeutic options are currently limited, affects the patient's quality of life. A promising strategy to reverse this disorder is the use of antifibrotic drugs. The present study proposes a novel microbead-embedded injectable hydrogel that can sustain the release of the anti-fibrotic drug pirfenidone (PFD) for vocal fold scarring. Microbeads were developed using sodium alginate and gelatin, which were further embedded into a biomimetic and tissue adhesive gellan gum (GG) hydrogel. The microbead-embedded hydrogel exhibited improved injectability, viscoelasticity, tissue adhesiveness, degradability, and swelling compared to the hydrogel without beads. Additionally, the bead-embedded hydrogel could sustain the release of the PFD for a week. In vitro studies showed that the drug-loaded hydrogel could reduce the migration and proliferation of fibroblast cells in a dose-dependent manner. In summary, this study demonstrates the potential of a PFD-loaded injectable hydrogel with enhanced viscoelastic and tissue-adhesive properties for vocal fold scarring applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.