Abstract

AbstractA neuromorphic computing system may be able to learn and perform a task on its own by interacting with its surroundings. Combining such a chip with complementary metal–oxide–semiconductor (CMOS)‐based processors can potentially solve a variety of problems being faced by today's artificial intelligence (AI) systems. Although various architectures purely based on CMOS are designed to maximize the computing efficiency of AI‐based applications, the most fundamental operations including matrix multiplication and convolution heavily rely on the CMOS‐based multiply–accumulate units which are ultimately limited by the von Neumann bottleneck. Fortunately, many emerging memory devices can naturally perform vector matrix multiplication directly utilizing Ohm's law and Kirchhoff's law when an array of such devices is employed in a cross‐bar architecture. With certain dynamics, these devices can also be used either as synapses or neurons in a neuromorphic computing system. This paper discusses various emerging nanoscale electronic devices that can potentially reshape the computing paradigm in the near future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.