Abstract

Nowadays, the food industry is heavily involved in searching for green sources of valuable compounds, to be employed as potential food ingredients, to cater to the evolving consumers’ requirements for health-beneficial food ingredients. In this frame, agri-food by-products represent a low-cost source of natural bioactive compounds, including antioxidants. However, to effectively recover these intracellular compounds, it is necessary to reduce the mass transfer resistances represented by the cellular envelope, within which they are localized, to enhance their extractability. To this purpose, emerging extraction technologies, have been proposed, including Supercritical Fluid Extraction, Microwave-Assisted Extraction, Ultrasound-Assisted Extraction, High-Pressure Homogenization, Pulsed Electric Fields, High Voltage Electrical Discharges. These technologies demonstrated to be a sustainable alternative to conventional extraction, showing the potential to increase the extraction yield, decrease the extraction time and solvent consumption. Additionally, in green extraction processes, also the contribution of solvent selection, as well as environmental and economic aspects, represent a key factor. Therefore, this review focused on critically analyzing the main findings on the synergistic effect of low environmental impact technologies and green solvents towards the green extraction of antioxidants from food by-products, by discussing the main associated advantages and drawbacks, and the criteria of selection for process sustainability.

Highlights

  • The United Nations defined a new sustainability-focused development plan consisting of 17 sustainable goals, recognizing, among others, the needs for sustainable chemistry and engineering [1,2]

  • This review aims at providing a comprehensive and up-to-date analysis of the main findings associated with the synergistic effect of emerging technologies and green solvents on the extraction processes of antioxidants from agri-food by-products

  • The valorization of agri-food by-products, as a natural and cheap source, through the recovery of valuable intracellular compounds, including antioxidants and phenolic compounds, could represent a useful and sustainable strategy to deal with these challenges

Read more

Summary

Introduction

The United Nations defined a new sustainability-focused development plan consisting of 17 sustainable goals, recognizing, among others, the needs for sustainable chemistry and engineering [1,2]. Solvents define an important part of the performance of industrial extraction processes having an impact on the recovery yield and quality of the extracts, as well as on costs, and environmental issues Their losses represent a major contribution to pollution of industrial processes, while their purification and recovery claim a large part of their energy consumption [1]. To overcome these issues, greener solvents have been proposed as alternatives to petrochemical solvents, being non-toxic, recyclable, biodegradable, and with a low energy cost of synthesis [5].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call