Abstract

Antimicrobial drug residues in food are strictly controlled and monitored by national laws in most territories. Tetracyclines are a major broad-spectrum antibiotic class, active against a wide range of Gram-positive and Gram-negative bacteria, and they are the leading choice for the treatment of many conditions in veterinary medicine in recent years. In dairy farms, milk from cows being treated with antibiotic drugs, such as tetracyclines, is considered unfit for human consumption. Contamination of the farm bulk tank with milk containing these residues presents a threat to confidence of supply and results in financial losses to farmers and dairy. Real-time monitoring of milk production for antimicrobial residues could reduce this risk and help to minimise the release of residues into the environment where they can cause reservoirs of antimicrobial resistance. In this article, we review the existing literature for the detection of tetracyclines in cow’s milk. Firstly, the complex nature of the milk matrix is described, and the test strategies in commercial use are outlined. Following this, emerging biosensors in the low-cost biosensors field are contrasted against each other, focusing upon electrochemical biosensors. Existing commercial tests that identify antimicrobial residues within milk are largely limited to beta-lactam detection, or non-specific detection of microbial inhibition, with tests specific to tetracycline residues less prevalent. Herein, we review a number of emerging electrochemical biosensor detection strategies for tetracyclines, which have the potential to close this gap and address the industry challenges associated with existing tests.

Highlights

  • Introduction published maps and institutional affilSince their discovery and exploitation over 100 years ago, antimicrobial drugs have become an essential part of human and veterinary medicine [1]

  • This sets the context for the final part of our review, where we focus upon the latest research into electrochemical biosensors to detect tetracycline drugs

  • This amplification had resulted in higher sensitivity and great selectivity of the biosensor when it was compared to the results from a performance without the Multi-walled carbon nanotubes (MWCNTs) coating

Read more

Summary

Cow’s Milk Properties and Antibiotic Behaviour

Cow’s milk is complex fluid composed of lipids, proteins, carbohydrates and minerals in aqueous phase [30]. It typically requires sample preparation and extraction prior to analysis to avoid possible interference between fractions

Raw Milk Composition
Binding Properties of Antibiotics
Chemical and Biological Properties of Tetracyclines
Mode of Action
MRL and Evidence of Presence in Milk
Persistence in the Environment
Existing Residue Test Methods
Commercially Available Screening Tests
Microbial Inhibition Test
Immune Receptor Tests
Laboratory-Based Analysis Techniques
Emerging Electrochemical Biosensors for Tetracycline Residues
Tetracycline Detection Strategies
Immunosensors
Enzyme-Based Sensors
Microbial Inhibition Sensors
Direct Electrochemical Detection Techniques
Aptasensors
Limitations of Existing Sensors and Future Needs
Specificity and Sensitivity
Sensor Cost
Sample Handling
Findings
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call