Abstract

Polymeric materials are the first choice for restoring tooth cavities, bonding tooth-colored fillings, sealing root canal systems, and many other dental restorative applications. However, polymeric materials are highly susceptible to bacterial attachment and colonization, leading to dental diseases. Many approaches have been investigated to minimize the formation of biofilms over polymeric restorative materials and at the tooth/material interfaces. Among them, contact-killing compounds have shown promising results to inhibit dental biofilms. Contact-killing compounds can be immobilized within the polymer structure, delivering a long-lasting effect with no leaching or release, thus providing advantages compared to release-based materials. This review discusses cutting-edge research on the development of contact-killing compounds in dental restorative materials to target oral pathogens. Contact-killing compounds in resin composite restorations, dental adhesives, root canal sealers, denture-based materials, and crown cements have all demonstrated promising antibacterial properties. Contact-killing restorative materials have been found to effectively inhibit the growth and activities of several oral pathogens related to dental caries, periodontal diseases, endodontic, and fungal infections. Further laboratory optimization and clinical trials using translational models are needed to confirm the clinical applicability of this new generation of contact-killing dental restorative materials.

Highlights

  • Biofilms are a complex of microorganism aggregates associated with bacterial cells adhering to each other in an enclosed polymeric extracellular matrix [1]

  • The colony-forming units (CFUs) of total microorganisms after seven days were reduced significantly in QADM resin composites compared to the control, but no significant inhibition was observed with total Streptococci, Mutans streptococci, and Lactobacilli [68]

  • The total microorganisms, total Streptococci, and Mutans streptococci biofilms were reduced by approximately 3 logs, while a 1–2-log observed over composites containing 3% MPC compared to the control (Figure 9E)

Read more

Summary

Introduction

Biofilms are a complex of microorganism aggregates associated with bacterial cells adhering to each other in an enclosed polymeric extracellular matrix [1]. Dysbiotic biofilms are the driver for the majority of oral infections, where dental caries (tooth decay) are considered the most prevalent. Pathogenic biofilms attaching on the tooth surface or restorative materials via specific binding proteins are virulence factors in the formation of dental caries [4]. The prevalence of secondary caries associated with polymeric restorative materials has reached 60%, and it has been recognized as the most common reason for resin composite restorations failure and replacement [10]. The complex structure of the oral cavity with the diversity of microorganisms, the ability of saliva to clear topical antibacterial agents, and increased drug tolerance make topical applications temporary and will render polymeric materials less effective in the long term. Ideal Antibacterial Agents Intended for Dental Restorations 2.2I. dIedaeAlanAl tAnibtnaitbcitabecartcieatreliraailgaAel nAgtegsneantrsetsIcnIhnteetmnendicdeadeldsfotfhroarDtDeinnetnteatrlafleRrReesewtsotiortahrtaibtoiaoncnstesrial reproduction and development, thusAAnrentidtbiuabccaitcnetgreiratilhaalegahegnaertnmstsafuraerlecehcffheemecmtisciacolasflstbhtaahctatetinriintaet,refaresfreerilewluwisttihrthabtabecdatcetirneiraiFlairlgeruperpreordo3du. ucMtcitoainnoynanacdrnidtdedreiveaevlseohlpoompumlednetnb,te, thtchuousnssrierddeeduruecdicningwgthhtheenehhadarmremvfeuflulolpeefifnffegecctstrseosofifnbb-abacactseteerdriaia, ,maasastielillruliuasstlrstraatwetedidthininaFFnigitgiuburareect3e3.r.iMaMlanapynryocprciertirettreiieraisa.shsAhouonuldliddbebeael cocaonnnstiisdbidaeecretreedrdiawwl hhaeegnnednetdveienvloecllpuoipdniegndrgesinirne-sdbienans-betadalsmerdaetsetmoriraaalttseiorwinaistlhs wawnotuiitblhdactahenaritvaibel apcnrtooeprieuarnltidepess.rioArpanberliedtieeeasfl.faenActtnsibaoicndteeratihlael anamgtieebcnahtcatinnercicilaualldpeadrgoeipnnetdrteiinnecstlauwldrheeisdlteoimrnaatiidonentnasitwnalionurgeldslotohnragav-tteieornnmos uawnndotieubslaidrcatebhrlaieavleeffbeencnotesfuoitnnsdtwehsietihrmaobeulctehraeensfifucelactlitnspgrooinpnettrohtixeeisc mweefhcfehilcaetnsmi[c1aa5iln]p.tAaroinsptiernargttieelgosynwgto-htiemlreammxiaamninitzitbaeaitnchitenergloialnolgnb-geten-rteemfirmtasnwatniibttahibcoatuecrttierarelisabulelbntieennfgietsfiinwtstoowuxilitdcheboffueettcortesnso[u1tl5toi]nn. lgAyihsntartvaoetxetighcye eceamtidnhaffntlstcdotecaamtidiffiohodanfahroaantfnnmeoeifititfxeuduafa,revcotrtbmeofdiitiiitrmtsstutigerscoatrbbessecheetiaeurmstecgrraaaenavds[eeehdxtitnyresc1clyrateenaffia.fhittmny5mmtllraryctteevetBoa.or]iiahchrrcaoc.eteavptiBynrebiiahttezhAmlrtaaeeihsbygatbreeaenoedalmlaeceiobratshrggwfntpdoattepitavechoshaehaeggitrronateephuenvhasrnlaeoaeeinunifiengrenftetsrpnmatrlcleoftuiehaogofalteai6artgcsciotcanaemhunrecm0aloiumyscyitnctseaeg%sud,msiosuititdeencbau-esbttoder,osstsadhieaideedovruuerettentldmcdtfe[hefadhriovrtmaat1tocldmtfetaeweitoampic3meinahoconoriotexw]strmcneenei.aroandoeiaetsrttoiemrMthnofaorl.dnehsetatefoervtetvhxatogeeirMtnraeaifhtzgeoiieevbxatshrngcnasearhtleciuibieadeslohyiaagccanlnatnlcleruimlpreelomhiyntnrftlsfgnoern6aeipfeemtwiirfenfpbgae0rtrccn6saifeflaacygi%niretaaeir0ofcasaaoltftetoeclyg%etnhsnreballrlsmroctmoyogegnteasubbbatrrbwimftiaonit-enatebuiaoreaaitwotcfttthntooeaptisnencahaiafinctranitcehorcrpistnhtlhehmalintdfieie.ehnimratetbaartlefp-hoteMie.ehlorvectasbsamsfstvteihoMqeuprceeaneaaimw[aevtetauacegrrbscl1tebeirbraersciiatihac6olrsafrneboerelrtebmrusia]ioyulerteaartbnao.llaomuanduinylmlctelitbpaTdliiomactatbnanedlitdrpehaeiltiahtugfebniianrdecenrehaeablonrsieregfenhivreatcenocienegdbnnesieotnatetltuntbciaeafegeiitnofilnobtotovcgtanlbolnniawitifilelrnicohnctptattclmiimtewnhtfyinllsinycaoteer,moitmcerhtsinalsiehdtraeoraceeoftrtisiaxihcaaaoglrvvaaeucbotttoqtitrlnhonscaaraelorgaeueblneuiqiydrnloellwrnlfharginlyiueuiuimaayozlsfrohahsaoasmadnuiiaeaahtluroebvpfcunastdc-dnet[aceactuiuesbacltte1odac-vedl[piitrctrutros6ett1obrnhpehtdehepi]tifffrtb6nawoeothp.rachdeoet]toeacanoctghnent.hTrcfeeetbrralauatoetetenienautThdeolrbritflnsgurerbteniymeuohiamliitinfhffghearacrtrnymeotimoeeiheaehcalnrartrcbtvfmttrveetiaehdceopovaeabeecteovfettcehlurrceconororvaninoehieotvticmbellsrtcoahanienl,uoahpeitevatylltrltehrainen,mueeha.feiyiazpyaytrhtaenxiinmereBfaeyczlireaaatttrxitatatroayrafeiechlhgaeviaotleonetlpntorawepahaegdsifcmaodclnesnoaitweuaogttfaenir[cnnsuaohhlvihstia1reotoaesnidnnievteeeehvarn3tfearowisdgdecs]eeestrtf. ainwnMintmhiabminecadyehcidtscaeitarcrrleiaaadltdledeipgsvericiveocusipescshseeears(tdFv(iieFegisnibug[etru1hee3rnee]4.n)d4M,e)ew,xvawthenslihyoecihpcscttehiardoaranettre.oedgidiimseicsspuchasuasrsevtsdeaednbinteiinbethnatcehdteenerenvixaeetlxlosptpesrceoetdcpitoeitnorot.niiem. spinarmt aendtiicbaalcdteevriiacleps r(oFpigeurtriees4),

Contact-Based Antibacterial Materials
Release-Based Antibacterial Materials
Dual-Contact- and Release-Based Antibacterial Materials
On-Demand Antibacterial Materials
Materials with Bacterial-Resistant Surfaces
Ethylene Glycol-Based Surfaces
Zwitterion-Based Surfaces
Materials with Bacterial-Release Surfaces
Dual-Function Antibacterial Surfaces
Contact-Killing Materials as a Strategy in Resin-Based Restorative Materials
Contact-Killing Materials in Dental Resin Composite Restorations
Contact-Killing Materials in Endodontics to Prevent Root Canal Reinfection
Contact-Killing Materials in Resin-Based Sealants
Contact-Killing Materials in Denture Base Materials
Contact-Killing Materials in Orthodontic and Crown Cements
Future Considerations of Contact-Killing Materials
Findings
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call