Abstract

Nuclear genome instability is known to play an important role in the origin of some human cancers. However, eukaryotic cells also have cytoplasmic genomes that are compartimentalised in the mitochondria. Mitochondria (mt) are essential for the regulation of several aspects of cell biology such as energy production, maintenance of redox status, molecular metabolism, calcium signalling and apoptosis. Oxidative stress causes significant mtDNA damage, which is thought to increase the risk of a growing number of degenerative diseases. MtDNA is highly suscepectable to mutations and contains fewer repair mechanisms than nuclear DNA, thus it may contribute to aging and be associated with the initial stages of carcinogenesis. Mitochondrial dysfunction might explain the dose-limiting toxicity of various therapeutic agents such as the nucleoside analogues used to combat HIV and hepatitis B viruses. The mitochondrial genome may represent a potential target for the development of cancer therapy. The role of mt-genomes in human diseases and in particular, in malignancy is still not fully understood. In this review, we focus on mitochondrial genome aberrations such as point mutations, instability of mono- or dinucleotide repeat, long deletions and change of the mtDNA copy number. The potential role played by mitochondria and mtDNA aberrations in malignancy, and the potential clinical use of the mtDNA markers are discussed. Keywords: Mitochondrial Genome, dinucleotide, malignancy, mtDNA

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.