Abstract

Modularity represents a recurring theme in the attempt to scale evolution to the design of complex systems. However, modularity rarely forms the central theme of an artificial approach to evolution. In this work, we report on progress with the recently proposed Tangled Program Graph (TPG) framework in which programs are modules. The combination of the TPG representation and its variation operators enable both teams of programs and graphs of teams of programs to appear in an emergent process. The original development of TPG was limited to tasks with, for the most part, complete information. This work details two recent approaches for scaling TPG to tasks that are dominated by partially observable sources of information using different formulations of indexed memory. One formulation emphasizes the incremental construction of memory, again as an emergent process, resulting in a distributed view of state. The second formulation assumes a single global instance of memory and develops it as a communication medium, thus a single global view of state. The resulting empirical evaluation demonstrates that TPG equipped with memory is able to solve multi-task recursive time-series forecasting problems and visual navigation tasks expressed in two levels of a commercial first-person shooter environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call