Abstract

Artificial spin ice (ASI) networks are arrays of nanoscaled magnets that can serve both as models for frustration in atomic spin ice as well as for exploring new spin-wave-based strategies to transmit, process, and store information. Here, we exploit the intricate interplay of the magnetization dynamics of two dissimilar ferromagnetic metals arranged on complementary lattice sites in a square ASI to modulate the spin-wave properties effectively. We show that the interaction between the two sublattices results in unique spectra attributed to each sublattice, and we observe inter- and intralattice dynamics facilitated by the distinct magnetization properties of the two materials. The dynamic properties are systematically studied by angular-dependent broadband ferromagnetic resonance and confirmed by micromagnetic simulations. We show that combining materials with dissimilar magnetic properties enables the realization of a wide range of two-dimensional structures, potentially opening the door to new concepts in nanomagnonics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call