Abstract
Gauge symmetries play an essential role in determining the interactions of particle physics. Where do they come from? Might the gauge symmetries of the Standard Model unify in the ultraviolet or might they be emergent in the infrared, below some large scale close to the Planck scale? Emergent gauge symmetries are important in quantum many-body systems in quantum phases associated with long range entanglement and topological order, e.g. they arise in high temperature superconductors, with string-net condensation and in the A-phase of superfluid 3He. String-nets and superfluid 3He exhibit emergent properties similar to the building blocks of particle physics. Emergent gauge symmetries also play an important role in simulations of quantum field theories. This article discusses recent thinking on possible emergent gauge symmetries in particle physics, commenting also on Higgs phenomena and the vacuum energy or cosmological constant puzzle in emergent gauge systems. This article is part of the theme issue 'Quantum technologies in particle physics'.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have